Playground
  • Log In
    • Log in with UmbrellaID
    • Log in with Helmholtz AAI
    • Login
  • About
  • Events
  • Materials
  • Workflows
  • Collections
  • Learning paths
  • Spaces
  • Directory
    • Providers

PaN-Training makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods1
    • Biostatistics1
    • Cloud computing1
    • Computer science1
    • Data management1
    • Data rendering1
    • Data visualisation1
    • Descriptive statistics1
    • FAIR data1
    • Findable, accessible, interoperable, reusable data1
    • Gaussian processes1
    • HPC1
    • High performance computing1
    • High-performance computing1
    • Inferential statistics1
    • Informatics1
    • Information management1
    • Information science1
    • Knowledge management1
    • Markov processes1
    • Metadata management1
    • Multivariate statistics1
    • Open science1
    • Pipelines1
    • Probabilistic graphical model1
    • Probability1
    • Research data management (RDM)1
    • Software integration1
    • Source control1
    • Statistics1
    • Statistics and probability1
    • Tool integration1
    • Tool interoperability1
    • Version control1
    • Workflows1
    • Show N_FILTERS more
    • Content provider
    • Elixir TeSS1
    • Show N_FILTERS more
    • Keyword
    • Automated testing1
    • Health Services1
    • Open Access1
    • Open Science1
    • Open Source Software1
    • Open source code1
    • Python for Data Analysis1
    • R Programming1
    • RAP1
    • Reproducibility1
    • Reproducible Analytical Pipeline1
    • Reproducible Environment1
    • Reproducible Research1
    • Reproducible Science1
    • SimPy1
    • Simulation1
    • discrete-event simulation1
    • reproduce1
    • reproducible research1
    • simmer1
    • Show N_FILTERS more
    • Difficulty level
    • Intermediate1
    • Show N_FILTERS more
    • Licence
    • MIT License1
    • Show N_FILTERS more
    • Target audience
    • Analysts
    • PaN Community61
    • PhD students48
    • PaN users37
    • PhD candidate26
    • Scientific community25
    • beamtime users, researchers, PhD students21
    • scientists21
    • researchers15
    • Bioinformaticians14
    • Data Managers14
    • Data Scientists14
    • ExPaNDS and PaNOSC project members14
    • PhD candidates14
    • Research Scientists12
    • Biomedical Researchers11
    • Researcher in life sciences10
    • Scientists10
    • beamline users10
    • research data scientist9
    • Biologists7
    • data curator7
    • Biologists, Genomicists, Computer Scientists6
    • Materials scientists6
    • beginner bioinformaticians6
    • data managers6
    • general public6
    • research data engineer6
    • Photon Community5
    • engineers5
    • Researchers4
    • bioinformaticians4
    • chemists4
    • industry4
    • life scientists4
    • Clinicians3
    • archaeologists3
    • biologists3
    • crystallography3
    • masters students3
    • material scientists3
    • neutron community3
    • Chemists2
    • Data stewards2
    • Ontologists2
    • PhD Students2
    • Physicists2
    • Post Docs2
    • Undergraduate students2
    • facility staff2
    • physicists2
    • policy officer2
    • programmers2
    • project manager2
    • spectroscopy2
    • researchers in energy materials1
    • Beginner1
    • Bench biologists1
    • Bioinformatician1
    • Bioinformatician, Bioanalysts1
    • Biomedical researchers1
    • Computational biologists1
    • Developers1
    • ECR1
    • IT support1
    • Librarians1
    • Life Science Researchers1
    • Life Scientists1
    • Life scientists1
    • Life scientists, bioinformaticians and researchers who are familiar with writing Python code and core Python elements, and would like to use it in their daily data exploration and visualization tasks.1
    • PhD1
    • PhD Scholars, Graduates and Post Graduates, Professors, Associate Professors, Assistant Professors, Bio instruments Professionals, Bio-informatics Professionals, Directors, CEO’s of Organizations, Supply Chain companies, Manufacturing Companies, Software development companies, Research Institutes and members1
    • PhD students in Genomics datascience1
    • Postgraduate students1
    • Principal Investigators1
    • Principal Investigators (PIs)1
    • Research Software Engineers1
    • Research scientists1
    • Students1
    • Trainers1
    • archaeologist1
    • biochemists1
    • computational scientists1
    • data manager1
    • experts / scientists in heritage sciences1
    • graduate students1
    • instrument scientist1
    • librarians1
    • medical researchers1
    • operational manager1
    • paleontologists1
    • post-docs1
    • postdocs1
    • research scientists1
    • researchers in energy materials1
    • scientific1
    • software developers1
    • software engineers1
    • students1
    • Show N_FILTERS more
    • Author
    • Amy Heather1
    • Show N_FILTERS more
    • Contributor
    • Alison Harper1
    • Fatemeh Alidoost1
    • Nav Mustafee1
    • Rob Challen1
    • Tom Monks1
    • Tom Slater1
    • Show N_FILTERS more
    • Resource type
    • Book1
    • Coding1
    • Computer Science1
    • Computer Software1
    • Course materials1
    • Data Science1
    • Documentation1
    • E-Learning1
    • E-learning1
    • Education1
    • Educational Resource1
    • FREE online course1
    • How-to guide1
    • Jupyter notebook1
    • Online material1
    • Open educational resource1
    • Programming1
    • Training materials1
    • Tutorial1
    • case studies1
    • course materials1
    • e-Learning1
    • e-learning1
    • educational materials1
    • examples1
    • handbook1
    • hands-on tutorial1
    • knowledgebase1
    • online course1
    • online modules1
    • online tutorial1
    • tutorial1
    • tutorials1
    • workflow1
    • Show N_FILTERS more
    • Status
    • Active1
    • Show N_FILTERS more
  • Only show materials from current space
  • Show disabled materials
  • Show materials with broken links
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Target audience: Analysts

and Across all spaces: true

1 material found
  • Book, Coding, Computer Science, Computer Software, Course materials, Data Science, Documentation, E-Learning, E-learning, Education, Educational Resource, FREE online course, How-to guide, Jupyter notebook, Online material, Open educational resource, Programming, Training materials, Tutorial, case studies, course materials, e-Learning, e-learning, educational materials, examples, handbook, hands-on tutorial, knowledgebase, online course, online modules, online tutorial, tutorial, tutorials, workflow

    DES RAP Book: Reproducible Discrete-Event Simulation in Python and R

    •• intermediate
    Computer science Data visualisation Data management FAIR data Informatics Open science Statistics and probability Version control Workflows Automated testing …
Training eSupport System
pan-training@hzdr.de
Imprint
Contribute
About PaN-Training
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.1
Source code
API documentation

The training portal for the photon & neutron community is supported through the European Union's Horizon 2020 research and innovation programme, under grant agreement 857641, 823852, the Horizon Europe Framework under grant agreement 101129751, and the consortium DAPHNE4NFDI in the context of the work of the NFDI e.V. under the DFG - project number 460248799.